ME 425

Fan Types

Fans are classified by the direction of air flow relative to the impeller

Axial Fans

Air flow is perpendicular to blade rotation

- Centrifugal Fans
 - Air flow is in the same direction as impeller rotation

Axial Fans

Propeller

Designed to move air from one enclosed space to another in a wide range of volumes at low pressures.

Tube-axial

 An axial flow wheel in a cylinder which moves a wide range of air at medium pressures.

Vane-axial

 Vane-axial fans have a set of air guide vanes mounted in the cylinder before or behind an airfoil-type wheel. They move air over a wide range of volumes and pressures.

Axial Fan Characteristics

TYPE	IMPELLER DESIGN	HOUSING DESIGN
BACKWARD- INCLNED BACKWARD- CURVED	Effbiency only slightly less than airfoil fan. Ten to 16 single-thickness blades curved orinclined away from direction of rotation. Efficient for same reasons as airfoil fan.	•Uses same housing configuration as airfoil design.
RADIAL	 Higher pessure characteristics than airfoil, backward-ourved, and backward-inclined tans. Ourvermayhave a break to left of peak pressure and fan shouldnot be operated in this area. Powerrises continually to free delivery. 	 Scroll. Usually narrowest of al centifugal designs. Because wheel design is less efficient, housing dimensions are not as critical as for airfoil and backward-inclined fans.
FORWARD-CURVED	 Flatter pressure curve and bwer efficiency than the airfoil, backward-curved, and backward-inclined. Donotrate fanin the pessure curve dp to the left of peak pressure. Powerrises continually toward free delivery. Motor selection must take this into account. 	Scioll similar to and often identical to other centrifugal fan designs. Fitbetween wheel and inletnot as critical as for airfoil and badward-inclined fans.
PROPELLER	 Low efficiency. Limited tolow-pressure applications. Usually bw cost impellers have two ormore blades of single thickness attached torelatively smallhub. Primary energy transfer by velocity pressure. 	Simple circularring orifice plate, or venturi. Optimum designis cbse toblade tips and forms smooth airfolinto wheel.

Centrifugal Fans

Designed to move air over a wide volume range. Static pressures can go up to 25 inches. Centrifugal fan wheels come in the following

Centrifugal Fan Characteristics

Fan Horsepower

Where: η_{fan} = Fan Efficiency AHP = Air Horsepower BHP = Brake Horsepower $TP = Total Pressure, inches H_2O$

Fan Laws

Fan Performance at different speeds from the manufacturer's fan curve can be predicted using the fan laws.

2

$$\left(\frac{C F M_2}{C F M_1}\right) = \left(\frac{R P M_2}{R P M_1}\right)$$
$$\left(\frac{P r essure_2}{P r essure_1}\right) = \left(\frac{R P M_2}{R P M_1}\right)$$
$$\left(\frac{B H P_2}{B H P_1}\right) = \left(\frac{R P M_2}{R P M_1}\right)^3$$

Fan Law Problem

A fan has the following characteristics:

- **5000 CFM**
- 1.25 inches static pressure
- 782 RPM
- 1.98 BHP

What RPM is necessary to increase the flow to 6,000 CFM?

What BHP is required?

System Curve

CFM

Pressure (in. w.c.)

CFM

System Operating Point

Catalog Fan Curve

Method of Obtaining Fan Curves

System Effect

Fan data is based upon discharge conditions at the time of testing, including certain minimum. For low velocity systems, the effective duct length is 2 - 1/2 equivalent duct diameters

System Effect

System Surge

Occurs when system resistance and fan performance curves do not intersect at a distinct point but rather over a range of volumes and pressures. - Trane

Fan Surge

Occurs near "block-tight" conditions when blade rotation is insufficient to overcome pressure difference between wheel center & discharge.

Variable Flow Control Devices

Bypass circuits
Discharge Damper
Variable inlet vanes
Vari-Cone
Econo-Cone

Variable Frequency Drive

Inlet/Discharge Control Schemes

VAV Control Performance

Variable Flow Device Performance

Discharge System Effect

